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Tbe three-dimensional steady flow of a heavy incompressible ideal fluid past an obstacle with a rigid 

boundary with general restrictions on the density and velocity di~~butio~ of the incident flow is 

considered. A set of two non-linear second-order equations which describe the flow pattern is derived. 

Formulation of tbe boundary-value problem is discussed. Formulae for calculating the forces acting on 

the obstacle are derived. Tbe simplifying assumptions associated with approximating the obstacle by a 

system of dipoles distributed over the barrier surface are investigated. As an example, the flow of an 

unbounded exponentially stratified fluid around a sphere is considered. Assuming the stratification 

parameter to be small, the main term in tbe asymptotic formula which expresses the dependence of the 

resistance on the sphere radius and the stratification parameters is calculated. 

1. THE FUNDAMENTAL EQUATIONS 

CONSIDER the tree-dimensional stratified steady flow of a heavy incompressible ideal fluid 
with a free boundary and a finite number of interfaces within the fluid on which abrupt 
changes in density p and tangential velocity v occur. To simplify the formulations, we will 
assume that a fluid of zero density is at rest above the free boundary. In the case of a finite 
depth, the rigid bottom is horizontal. There is a flow around the source of disturbance which is 
located in the fluid and occupies the region R. We choose the origin of the Cartesian 
coordinates on the undisturbed free boundary; the z axis is directed vertically upwards while 
the x axis is directed along the undisturbed flow. By choosing a characteristic linear dimension 
HO, velocity U,, and density p,,, we can write the equation of fluid flow in dimensionless 
variables. The density p and velocity u, of the undisturbed onedimensional flow are defined 
by piecewise-smooth functions p(z) and U(y, z) which undergo abrupt changes when passing 
through the z = zk planes, and in this case, - c z, c . . . c z, = 0, dp a 0, U a c > 0. 

As x + - the flow is asymptotically undisturbed; the x coordinate increases from - to +- 
along the trajectory of the fluid particles. The trajectory which passes through an arbitrary 
point (x, y, 2) as x + - asymptotically approaches a straight line Y = rl(x, y, z), 2 = &x, y, z). 
Since the flow is steady, the functions Vrl and Vc maintain their constant values along the 
t~~_t~ being the integrals of the equations of motion, and consequently, (v, Vq) = 0, (v, 

S&&e that Vrl and VC are independent quantities; we shall assume that 

v= U(r/, c)b, b = [Vr), VU (1.1) 

In view of (l.l), the equation of contin~ty is satisfied. Since any s~ficiently smooth function 
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of the flow integrals is by nature this very integral, the functions p(r), U(q, 5) and the total 
energy H(?I, r) are the integrals of the equations of motion, and the Bernoulli integral 

P + MS)z * ‘/iP(r)u% C)b2 = H(% 0, v = gHClIU2, (1.2) 

holds, where p is the pressure. 
By projecting Euler’s equation on the directions VQ and VY; and by using Eq. (1.2) with 

asymptotic equalities y = 11 and z = [ as n + -, after standard algebra we obtain a system of 
two quasi-linear second-order equations 

cu2~rt,f)(~otlV~,VSf,V~~=jfLfltV17,V5112 - l)~~{~,~)/~~ 

-~(71,3‘)(rot[V9,V51,V77)=Vpf(f)(z- 5)+HW7rl,V~l12 - l)ac+?h WC 

Q%?, 5)= P(w%?~ f) 

(1.3) 

Let us now formulate the boundary conditions. We will denote the abrupt change in the 
arbitrary function @ when passing through the kth interface by [@IIt. If p_ is the pressure in 
the undisturbed flow, then 

fP-P_eolk=f~]&=fSJ&=O, k=l,...,n (1.4) 

fl =-H 2=--H (1.5) 

For an in~tely deep fluid, condition (1.5) is replaced by the condition for V(q-y) and 
V([-z) to be bounded within the flow region. Besides, radiation conditions are imposed 
which result in a higher order of decrease in V(Q - y) and V([ - z) as x -+ -, compared to the 
order of decrease as x + +oo. 

At the surface 30 of the solid n the condition of impermeability 

cmvt, N) = 0 (1.6) 

is satisfied, where Nis the vector of the normal to XL In the vicinity of a non-singular point, 
the smooth surface aaZ may be defined by an explicit equation, e.g. z = z(n, y). In this vicinity, 
condition (1.6) takes the form 

From (1.7) it is obvio~ that in the vicinity under consideration, at least one of the three 
conditions: 9 = const, c = const and C = f(n) is satisfied. The bounded smooth surface XJ may 
be cut into some finite number of surfaces C,, . . . , X;, and at least one of the following 
conditions 

holds on each of them. 
A selection of surfaces Xi and one of the conditions of (1.8) at each surface is an essential 

element of the mathematical model for the flow around a solid, but it still does not ensure a 
unique solution. Following Zhukovskii’s classical airfoil theory, the additional conditions at 
the bounda~ of the body around which the flow is considered may be associated with the 
nature of the set of critical points at the surface && i.e. with the phase pattern of trajectories of 
fluid particles at the surface &I. As experiment [l] shows, the phase pattern depends on the 
body shape and on the ranges of the physical parameters of the flow. In some important 
practical cases, the phase pattern allows of a fairly simply description [2]. 

We will consider well-strea~ined bodies (e.g. convex bodies obtained by the revolution of a 
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smooth curve around an axis parallel to x axis). If h is a characteristic dimension of the body, N 
is Vaisala-Brunt number and Fr = U,Nh > 1, U(y, z)= U,, then, as experiment [l] shows, the 
phase pattern is of the same nature as in the case when potential uniform flow around the body 
occurs. On the surface XI there are only two critical points A and B. The trajectory which 
intercepts point A branches at this point into a pencil of trajectories which later converge at 
point B. The boundary conditions on aLI take the following form 

and in the case of a solid of revolution, the constant q0 =O. The constant [,, must be 
determined when solving the flow problem [3]. 

In the case of Fr c 1, the pattern of the phase trajectories on &2 will be more complex. Let Q 
be a solid of revolution, and let r be a section of %J by the xz plane. Experiment shows [l] that 
the critical points of the flow are located in two arcs I, and I, separated from the curve r by 
two planes z = 4 and z = &. At z E [b, &] the phase curves are the sections of the aQ surface 
with the z = const planes. At z > & and z <h, the phase trajectories have the form of pencils 
which lie at an and converge at the ends of the arcs I, and I,. The following model of the 
boundary conditions on &I is proposed 

5=r1. z< h; !t=52, z>h*; C=ftz), hl< 2-c hz (1.10) 

The function f(z) increases by [h, /r.J from [, to 5;. The constants 4 and & will be found 
from the requirement that the particles which lie on the trajectories, arriving at the ends of arcs 
I+, and I,, possess sufficient energy to reach the nearest apex of the body a. We may try to 
approximate the function f(z) by a linear one. 

The model proposed for the flow without separation is insufficient in the case when in the 
boundary layer on the body an intensive process of vortex formation and separation occurs. It 
is likely that in this case within the framework of the ideal fluid concept it will be necessary to 
develop the jet flow models. The experimental paper [4] presents data on the influence of 
diffusion processes, which occur in the inhomogeneous fluid, on the flow pattern. 

2. LINEARIZATION 

We put C= z-w and 17 = y- U, and assume that u and w will be treated as small first-order 
terms. Neglecting small terms of higher order in Eqs (l.l)-(1.4) we obtain 

au 
%=WY,z)U- - - az ay 

d”), uy=U(y,z)~. u, = WY, z) E 
a*u a 

"*(Y. z) - 
ax* 

+ -p2(YA( a, 

d”++) 

$(YP z> 2 + ;@(YA($ + E)) - vp’(z)w = 0 

au 
[d(Y.Z)($ ay +-I - Y/(z)W]k= [U]k= [W]k=O 

(2.1) 

(2.2) 

(2.3) 

WI *nr_H=O. k=O,l,..., n 

When the velocity U(y, z) does not depend on y, the system of equations (2.2) and boundary 
conditions (2.3) will be reduced to standard form 
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) - up’(z)w)-up~(z)~ = 0 (2.4) 

a2u a2u a2W - + __=_-, 
ax2 ay2 ayaz 

WI =o z=-H 

azw 
upw) - vp - ay2 k=[W]k=[U]k=O. k=O....,n 1 

The linearized equations provide a good description of the flow at a fair distance from the 
source of the disturbance. 

3. THE FORCE ACTING ON THE OBSTACLE 

Let S be a closed surface containing the domain R within it, K, the projection of the 
momentum on the x axis, and D the force caused by the action of the fluid on the obstacle. By 
virtue of the law of change of momentum 

L?= -j(pcosnx +pLJ,u,)& 
S 

(3.1) 

By substituting the value of the pressure from Bernoulli’s equation (1.2) into (3.1) and 
denoting the pressure in the undisturbed flow by pO(z) we obtain 

D=-~p(~,u~dzdx+u~u~dxdy)+~(vZp(u~tu~ -u; - U’)+ (3.2) 
s s 

+ W (0 (z - n - Po(WY~Z 

For any smooth function div(F( r,t, JJv) = 0 and by virtue of Gauss’ theorem we have 

Using the equalities 

P;(t)= -v(f), ipo(z)dydz = 0, R = Zj$(z + nv)&- 
0 

PO(Z) - PO(S) - VP;(~) (z - f)= -Hw2R(z, w) 

and subtracting equality (3.3) from (3.2) we obtain 

D = -I p (5) (uX - U) (u,, dzdx + u, dxdy) + 
s 

+ HJ(Lm (u$ + uz - (uX - CQ2 ) - VR (z, w)w’ )dydz 
s 

(3.3) 

(3.4) 

If the surface S is sufficiently far from Q, we can substitute the linear approximations (2.1) 
into (3.4) and, by making use of the fact that R (z, 0) = p’(z), we obtain 

D=-ja’(y,z)(c + ;)(u,dzdx-w,dxdy) t 
s 

(3.5) 
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+ %pYQ,z)(U: tw:-($ t +f>‘)- vp’(z)wz)dydz 

In the plane case, the surface integral must be replaced by a curvilinear one and we must put 
u=O [S]. 

Let us transform formula (3.5) by using the system of equations and boundary conditions 
(2.1)-(2.3). 

By multiplying the first equation (2.2) by w and the second equation by U, subtracting the 
first result from the second and substituting the expression obtained into formula (359, we find 
that 

Let us take S as a side of the parallelepiped 5, s n G 4, -n s y c rj, -H c z s 0. Letting 

Q 4-9 4 -+ +m, rl+ +o and taking account of the boundary conditions at the bottom and on 
the free boundary, we obtain 

In the case of a fluid of infinite depth, H = +aq 

4. THE UNBOUNDED FLOW OF AN EXPONENTIALLY STRATIFIED 
FLUID AROUND A SPHERE 

We take the sphere radius R as a length unit, denote the Vaisala-Brunt frequency by N and 
assume that 

gR NR N2R 
II=--+, p=--$ e=g> w= e -?iEZw , 0 = e-4/2=, 

Assuming that the parameter E is much less than j?, we transform Eqs (2.4) to the form 

$@ 
d2w 

tit$,)++-- = 
a29 a20 a% 

La= 
3Y2 

0 -+_=_- 
' ax2 ay2 ayaz 

(4.1) 

Assuming that w and 0 are integrable with a square in the plane n=const denoting the 
corresponding plane Fourier transformation by Fw and F8 we obtain from (3.6) by means of 
Plancherel’s equation 

If the far field is approximated by the field of the flow past a dipole, the functions 8* and o2 



72 A. M. TER XRIKOROV 

are found to be non-integrable and Eq. (4.2) is unsuitable. To overcome this difficulty, the flow 
around a sphere will be approximated by the flow around a system of dipoles distributed over 
the surface of the sphere. The distribution density depends analytically on the parameter p [3] 
and to a first approximation we can take /I = 0 in the expression for the density distribution, i.e. 
we can take this density to be the same as in the problem of the flow of a homogeneous fluid 
around a sphere. 

The source function G(x, y, z) is a solution of the equation LG = ~Y(x)G(y)6(z), the operator 
L being defined by (4.1) and the delta-function is denoted by 6. The usual procedure results in 
the following formula 

FG’=$QJ&-xc+Ad-l&d, 2/i* =dtP* -p” -q* 

2C*=dtp* tq* -$, d=(p* -p*-q*)* t4f12q2 

(4.3) 

which holds for x > 0. 
The exponentially decreasing term in (4.3) can be ignored, as it does not affect the value of 

the force D calculated from (4.2). 
Let us consider the problem of the unbounded flow of a homogeneous fluid around a sphere 

of unit radius. Using the formula [6] 

$=E$(l -r-S), r* =x* +y* tz*, p* =y* tz* 

and the relations 

we obtain 

p* (1 - r-3) = q* + <* , f/q = z/y 

w=z- (=z(l -Jl -r-3) 

On the boundary of the sphere c=O and w= z, and as r -_) +oo the asymptotic equality 
w=Xzr-’ holds. Note that xzre3 is a harmonic function taking the value Xz on the sphere 
boundary. If the linearized equation Aw =0, is used, then to obtain the proper asymptotic 
forms for w as r += it is necessary to solve the linear equation Aw= 0 with boundary 
condition w Ian= Xz. Such a solution can be represented in the form of a double-layer potential 
with density I/. 

Approximating the inhomogeneous fluid flow around the sphere by the corresponding 
double-layer potential [3] with density 3~/(87r), we obtain 

Omitting the exponential term in Eq. (4.3) for the Fourier transformation and using the 
properties of the Fourier transformation, convolution and the symmetry of the sphere, we 
obtain 

Fw = f d-‘sin Ax& ic(Al’ t pq t qc)e’@ s+pq+qf)ds (4.4) 

When the orthogonal linear transformation 

E’=Y’(AE+pq+qt), $=a-‘(PC-qq) 

1’=(w)-‘(ApqtAqr-$8, d=p* tq*, -i” =A* tp* tq2 (4.5) 
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is applied, the sphere is transformed into itself, C’=qr-‘~+pa-‘q’+qrl(~)-‘~. From (4.4), 
using the symmetry of the sphere, we obtain 

Fo = 6&-‘&x (7)sinAx 

x(7)= 27-3(7cos y sin7)- 7-‘sin7 (4.6) 

Setting up a relation between F6 and Fo, by means of (4.1) and substituting the value of Fw 
from (4.6) into (4.2), we obtain 

Using (4.3) and making the change of variables 

p= ~~~os~, q =&./&imp, d2 = fi'd:, d: ‘(1 + t)’ -4tcos2p 

A2 =/3’A:, A: = H(d,(t) + 1 - 0, 7(t) = &uz (0, 71(t) = 4.4: + t 

we can write (4.7) in the form 

(4.7) 

In &I. (4.8) we shall find the principal term of the asymptotic form as 
t++m 

dl-t, Ai 

p +O. Note that as 

-1 (4.9) 

Let T be so large that we can use formulae (4.9) when t > T. If the inner integral in (4.8) is 
represented in the form of the sum of integrals over the intervals (0, 2”) and (T, +=), the first 
integral is bounded, and the second has the order of magnitude In j3 as j3 + 0, and hence, it 
defines the asymptotic form as B + 0. In fact, by virtue of (4.9) 

It follows from (4.6) that x2(O) =X, and the integral 

converges. Therefore, as p + 0 

D= $,ln@,, B= F (4.10) 

Many investigators have simulated the flow around a sphere by distributing the mass sources over its 
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surface with a density taken from the solution of the corresponding problem for a homogeneous fluid.? In 
this case, the coefficient in formula (4.10) is found to be equal to 18. The discrepancy is probably 
connected with the impossibility of making a choice of variables for which the solution of the problem of 
the flow of an inhomogeneous fluid around a body reduces to the solution of the Neumann problem as in 

the case of the flow of a homogeneous fluid around a body. If we seek the solution in the form of a 
simple-layer potential, the problems of the solvability of the corresponding integral equations and the 

continuous dependence of the solutions upon the parameter have not been studied. 

In diiensional variables the force acting on the sphere is equal to p,(RU)2D. Taking, for comparison, 

the force of viscous resistance as given by Stokes’ formula ~=6~~(~U)2Re-1, we find that the ratio of 

the wave drag to the viscous drag is equal to j3’ I In/3 I Re132. 
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